

FURTHER FASTER TOGETHER

AMG-319 PHASE IIA SMALL MOLECULE PI3K DELTA-SELECTIVE INHIBITOR

NON-CONFIDENTIAL OVERVIEW

MAY 2022

AMG-319 PHASE IIA READY

A HIGHLY SELECTIVE, POTENT SMALL MOLECULE PI3K DELTA INHIBITOR FOR USE IN SOLID TUMOURS

PROJECT SUMMARY

Clinical hypothesis	 PI3Kδ blockade as immunotherapy for solid tumours PI3Kδ has a preferential modulatory effect on regulatory cells (Treg) vs. other T cell subtypes The primary hypothesis is that exposure of an immunologically sensitive solid tumour to a PI3Kδ inhibitor will result in an anti-tumour effect by releasing Treg suppression of CD8+ T cells
S AMG-319 status	 Phase IIa asset for evaluation at amended dosing +/- as a combination therapy Phase IIa trial: AMG-319 monotherapy in head and neck squamous cell carcinoma (HPV+/-) patients Reduced tumour Treg cell count and heightened intratumoural CD8+ T cell cytotoxicity observed providing evidence to support proof of mechanism Recent evidence to support intermittent dosing as a method to address toxicity
License package	 Full data package, two active patents, pre-existing API supply License to develop in all solid tumours and full clinical data package including the CSR Covered by 2 active patents with the latest filed in 2012 Pre-existing drug supply ready for follow-on trials

• •									•						•			•			•												•					
		$ \rightarrow $	✦◀																					-		-					-							
			••		•••	•••	•••	•••	•	•••	•••	•••	•	•••	•		•••	•	•••	•	•	•••	•••	•	•••	•	•••	•••	•	•••	•	•••		•••				
• •	• •				•••			•••						•••	•	••	•••			•			•••		•••		••	•••	•	•••	•	•••	•	•••	•••	•	••	•••
•••	• •		II	JJ											•	••	•••			•							••							•••			••	
• •	• •	• •			$\mathbf{O}\mathbf{O}$	• •									•	••	•••			•							••							•••			••	
	• •	• •				•									•	••	• •			• •							••							••			••	
	• •	• •				00										••	• •			• •							••							••			• •	
		• •	•	••		0	•								•	••	• •			• •							••							••			• •	
		• •	•	• •	••		ŎĊ	•••							•	••	• •			• •							••							•••			• •	
			•	••	••			•																													• •	
				• •	• •				•																													
				• •	• •									•																								
								H	╋┩	.				•																								
									++																													
									++	++																												
										++																												
•••	•••	•••	•	•••	•••	••	•••					· ·	•	•																							••	•••
•••	•••	•••		•••	•••	•••	••	•					•	•																							••	
		•••					• •	• •							F																						•••	
		• •						• •	•	• •						2,																					• •	
		•••					• •	• •					•		L))											•••	
		• •					• •	• •				•																									••	
		• •				• •	• •	• •																													• •	
		• •				• •	• •				•																										••	
		• •			• •	• •	• •		ΙΙ	\mathbf{T}	• •																										• •	
		• •			• •	• •	• •		T	•																											• •	
				• •	• •	••				• •																											• •	
				• •	• •				7.																												• •	
			•	• •	• •			•																														
			•	• •																																		
						ΗM	Η.	•••					•		•			•			•										•							
					XX	HH																																
					HΗ	HY																																
				+	H																																	
•••	•••			+	-	•••	•••	•••	•	•••	•••	•••	•	•••	•	•••	•••	•	•••	•	•	•••	•••	•	•••	•	•••	•••	•	•••	•	•••	•	•••	•••	•	••	•••
•••					•			• •								•	• •			•							• •							•••			•	
• •		H													•	•	• •			• •							• •							•••			• •	
• •	• •	L		•											•	• •	• •			•							• •							•••			• •	
		II	II												•	• •	• •			• •							• •							• •			• •	

AMGEN LICENSED AMG-319 TO CRUK'S CENTRE FOR DRUG DEVELOPMENT (CDD)

CONTEXT

Amgen

- Amgen is the AMG-319 originator who developed the drug and conducted a First-in-Human Phase I trial in relapsed or refractory lymphoid malignancies
- Subsequently licensed AMG-319 to:

Aspire Therapeutics (Acerta Pharma subsidiary)

- License to develop in haematology indications
- Ongoing Ph I/II trials testing AMG-319 in combination with BTK inhibitor ACP-196 (acalabrutinib, Calquence)
 - Chronic Lymphocytic Leukaemia
 - B cell malignancies (Non-Hodgkin's Lymphoma, Multiple Myeloma, B-ALL)

CRUK CDD

- Clinical Development Partnership between Amgen and CRUK where CRUK was granted a license to AMG-319 to run a Ph IIa trial for AMG-319 in HNSCC patients at the charity's cost
- Following CRUK's study, Amgen declined to further develop AMG-319.
 CRUK now has an option to obtain exclusive rights to the program and related IP

CRUK are currently seeking a new partner to license AMG-319 for further development in solid tumours

USE OF PI3KδI AS AN IMMUNOTHERAPEUTIC HAS BEEN VALIDATED IN VIVO AND IN PATIENTS

CLINICAL VALIDATION

- Various PI3Kδ inhibitors have been approved for treatment of B-cell malignancies, where inhibition targets intrinsic cancer cell dependency on BCR signalling
- An large body of preclinical and clinical evidence [1][2][3] has been gathered to demonstrate its distinct effect in preferentially inhibiting Treg cells vs. other T cell subsets
- AMG-319's Phase IIa trial was the first in-depth study of the immunotherapeutic effect of PI3Kδi in solid tumours
- The trial was closed before efficacy endpoints could be assessed due to difficulties around dosing and a protocol limitations however PI3Kδ inhibition was found to displace Treg cells from tissues including tumour tissue whilst inducing expansion and greater cytotoxic effects of intratumoural CD4+ and CD8+ T cells

Further details on subsequent slides

				٦.																					•															
			⊶																																					
• •						••	•••			••		••		•••		• •		•••			•			••	•	•••	•	•••	•	•••	•	••	•	•••	•	•••	•••	•	•••	•••
• •	•		L	J	\bigcirc	•	• •			••		• •		• •		• •		•••			•			• •						••	•	••								
• •	•	• •			X	•	• •			••		• •		••		• •		•••			• •			• •						••	• •	••								
• •	•	• •				\mathbf{X}	• •			••		• •		••		• •		••			• •			• •						••	• •	••								
	•	• •	•				•			• •		••		••				• •						• •						••	• •	• •								
			• (•						••																										
	•	• •	•			•			•		•			••					•	 •			•		•		•						•		•					
								┿┥																																
								┿┥																																
•••	•	•••	•	•					\rightarrow		•		•	•••	•	•																							•••	
		•••		••	•						•	•••		•••		•••																								
				•••	•	•	•					•		•••		• •																								
				•••		•	• •			\mathbf{D}	U	•		••		• •																								
				••		•	• •					\mathbf{X}		••		• •																								
				••		• •	• •	•	•			\mathbf{D}		••		• •																								
				• •		• •	• •	•	•			\mathbf{D}	Ŏ(•		• •																								
				• •		•	• •	•	•				Ŏ		•	• •			\prec																					
				• •					•	• •	•)																		
															H	<u> </u>																								
															Η	· .																								
													H	+																										
												₩	$ \rightarrow $					D																					•••	
•••	•	•••	•	•••	•	••	• •	•				\mathbf{H}		•	•	•••)							•••	•••
				•••		• •	• •					\mathbf{H}		•••		• •												_												
				•••		•	•					\mathbf{J}		•••		• •																								
				••		•	• •			\mathbf{D}		•		••		• •																								
				••	• (•	• •			\mathbf{D}		• •		••		• •																								
				• •	•					\mathbf{X}		• •		••		• •																								
				• •	•				\mathbf{T}	•		••		••		• •																								
			•	• •	•			T						• •																										
		• •	•					11	•																•								•		•					
						•		\mathbf{M}																																
					H	✦┥																																		
					H	+																			•	•••	•	•••	•				•	•••	•	•••	• •	•	•••	
• •	•				$ \rightarrow $	$\mathbf{\cdot}$	• •			•••		•		•••		• •		•••			•			•						•	•	•								
••	•		U			•	• •			•••		•		•••		• •		• •			•			• •						• •	•	•••								
• •	•		U		\bigcirc	•	• •			•••		•		• •		• •		•••			• •			• •						• •	•	• •								
• •			U	L		•	• •			• •		•		• •		• •		• •			•			• •						• •	•	• •								
• •			Τ	•		•	• •			• •		•		• •		• •		• •			•			• •						• •	•	• •								

PI3KδI REDUCES TUMOUR VOLUME AND PROMOTES ANTI-TUMOUR IMMUNE ACTIVITY IN MICE

PRECLINICAL DATA

Figure 1: Mice were inoculated subcutaneously with B16F10-OVA cells and fed either a control diet or a diet containing the PI-3065 PI3Kδ inhibitor for the indicated treatment period. n=9-10 mice/group. Data are mean +/- S.E.M. Significance for comparisons were computed using Mann-Whitney test are the data are representative of two independent experiments. (a) Tumour volume of PI3kdi vs. placebo-treated mice (b-c) flow-cytometric analyses of T-cell frequencies

							•	• •		/		•		•					•		•	• •											• •	•							
		H	┿┥																																						
					•••	•••	•	•••			•••	•	•••	•	•	•	•	•••	•	•••	•	•••	•	•	•		•	•		•	•••	•	•••	•		•	•••		•		
• • •					•••			•••	• •		•••		•••		•			•••				•••	• •		•••		•••		•••	•	•••		•••	•	•••	•	•••	•••	•	•••	•
• •				JU				•••	• •	•	•••		•••		•			••				••	• •										•••	•				•••			•
• •	• •	• •			$\mathbf{O}\mathbf{O}$	• •		•••	• •	•	• •		•••		•			•••				•••	• •										•••	•	•••			• •			•
	• •	• •				•		•••	• •	• •	• •		• •		• •			••				••	• •										••	•	•••			• •			•
	• •	• •					•	•••	• •	•	• •		• •		• •			••				••	• •										• •	• •				• •			•
	••	• •	•	••	\bullet			• •	• •	•	• •		• •		• •			••				••	• •										••	•	• •			• •			•
	•••	• •	•	• •	••		Γ	•	• •	•	• •		• •		• •			•••				••	• •										• •	• •				• •			•
	• •		•	• •	••				•	•			• •																												•
				• •	• •	• •																																			•
				• •	• •				H	` .																															
									H			•																													
									H	+	<u> </u>																														
										↤																															
										↤	$ \rightarrow $						_	_		_						_															
										4	$ \rightarrow $	\leftarrow					Λ						\mathbf{D}																		
•••	•••	•••	•	•••	•••	•••	• •	•		H		\mathbf{H}		•	•				VA				5																•	•••	•
•••	•••	•••	•	•••	•••	•••	•	•••				Ч			•																								•	•••	•
	•••							••	•			Ч	H																												•
	•••						•	••	• •			Ч		•				_	_		_	_		_	_		_					_									•
	•••						• (• •			Ц.		•											Λ					Λ		- /										•
	•••					• •	•	• •		\mathbf{X}		\mathbf{L}	• •											A					A			4									•
	••					• •	•			\mathbf{J}		•	•••																												•
	••				• •	• •	•			\mathbf{J}	•		• •																												•
	••				• •	• •				\mathbf{J}	• •		• •																												•
	••			• •	• •	• •				•	• •		• •																												•
	••			••	• •					•	• •		• •																												•
	••		•	• •	• •			\mathbf{T}	•	• •	• •		• •																												•
	• •	• •	•	• •	• •		T	•	• •	•			• •																												•
		• •	•	• •				• •														•••											• •	•							•
	• •	• •					Y.	• •										• •				••																			
	• •	• •				.	•																		• •																
• •					H			• •		/		•							•																/						
					\prec									•					•																						
			╋┿																																						
			✦✦																							•	•••	•	•••	•	•••	•	•••	•		•	•••		•	•••	
				• •	• •	• •	•	• •	•		• •	•	• •	•	•	•	•	•	•	• •	•	• •	• •	•	• •								• •	•	-			•			•

AMGEN CONDUCTED A FIRST-IN-HUMAN PHASE I STUDY IN PRETREATED CLL/NHL

FIH PHASE I		
•	PHASE I FIRST-IN-HUMAN DOSE ES	
Study sponsor	AMGEN	
Study size	28 participants	
Patient population	Relapsed or refractory CLL and NHL patients	
Study design	 Part I Dose Exploration 25, 50, 100, 200, 300 and 400 mg daily Continuous reassessment model used to guide dose escalation and to define the maximally-tolerated dose (MTD) 	 Part II Dose Expansion Use dose no higher than the MTD Further explore the safety, PK, and clinical activity of AMG 319
Key findings	 400 mg per day administered without reaching a This dosage led to near complete target inhibition related adverse events (irAE) at grade 3 or above 	a maximally-tolerated dose on and >50% nodal regression while immune e did not occur till after days 40 and 60

CRUK CDD SUBSEQUENTLY CONDUCTED A PHASE IIA TRIAL IN HNSCC PATIENTS

PHASE IIa TRIAL

PHASE IIA TRIAL IN NEOADJUVANT HNSCC (HPV+/-) PATIENTS

Study sponsor	CANCER RESEARCH UK CENTRE FOR DRUG DEVELOPMENT
Study size	 30 participants (9 placebo, 21 treated with AMG-319)
Patient population	 Head and neck small cell carcinoma patients (neoadjuvant setting)
Study design	 Patients received between 20 and 28 days of oral dosing with AMG 319 or placebo immediately before resection surgery Dosing set at 400mg/day based on the rationale that high grade irAE would be unlikely given the shorter treatment duration as compared to the Phase I study (28 days vs up to 60 days)
Key findings	 Analysis shows that PI3K inhibition reduced tumour Tregs and heightened CD8+ cell toxicity Dose requires amendment (this was reduced to 300mg/day in the trial however protocol design did not allow changes to dose scheduling to further explore safety in this patient population. CDD decided to close the study.) Toxicity likely owed to greater immunocompetency of solid tumour patients in the neoadjuvant setting. Scientific advice that intermittent dosing addresses toxicity, opening a path for safe use

AMG-319 WAS FOUND TO DISPLACE TREG CELLS AND HEIGHTENED CD8+ CYTOTOXICITY

CLINICAL DATA

Figure 1: AMG-319 plasma concentration over time in placebo- and AMG-31- treated patients

8 patients discontinued treatment between day 7-9 resulting in loss of detectable drug in PK analysis on day 15

Figure 2: FoxP3 levels in tumour samples from patients treated with AMG-319 as assessed by gene set enrichment analysis. Placebo (LHS), AMG-319 treated (RHS)

Increased CD8+ T cell cytotoxicity in AMG-319 treated vs. placebo patients

Figure 3: Bulk RNA-seq analysis of CD8+ T cells comparing AMG-319 to placebo treated patients. Differentially expressed genes between pre- and post-treatment samples are highlighted in red

														•														•	•		•		•		•	•	• •	•		•	
		\leftarrow																																							
						•••	•	•••	•	•••	•	•	•••	•	•	•••	•	•••	•	•	•••	•	•••	•	•	•••	•	•	•	•••	•	•••	•	•••	•	•	•••	•	•••	•	· ·
• •						•••		•••		• •	•		•••		•	••		••	•					•	••	•••		•						•••			•••		••		
• •	•		00	U		•••				• •	• •		• •		•	••		•••	•					•	• •	• •		•						• •			•••		••		
• •	•		• •)•••				• •	• •		• •		•	••		••	•					•	• •	• •		•						• •			••		••		
	• •	•	• •) •				• •	• •		• •		•	••		••	•					• •	• •	• •		•						• •			• •		• •		
	•	•	• •	• •		TT	•			• •	• •		• •		•	• •		• •	•					•	• •	• •		•						• •			• •		• •		
		•	• •	• •						• •			• •						•						• •			•						• •			• •		• •		
				•			• •	۰.																																	
							++																																		
							++	+																																	
							••								·																										ľ.
•••	•	••	•••	•••					$ \rightarrow $		• •	•	•••	•	•																								•	•	•••
		••			•••								•••																												
		• •			• •	• •			U			•	•••																												
		• •			•••	• •	• • (• •	0(\mathbf{J}			• •																												
		• •			• •	• •	•	• •				IJ	• •																												
		• •			• •	• •	•	• •	• (•																												
		• •			• •	• •		• •	•				\mathbf{O}	•				_				_					_	_				_		_		_	_				
		• •			• •	• •		• •	•																																
		• •						• •	•					Y.																											
							•	• •					Υ.																												
												• •																													
											$ \rightarrow $	\leftarrow																													
									H	✦	H																														
•••	•		•••	•••	•				H	✦		•	•••	•	•																								•	•	•••
•••	•	••	•••	•••	• •				H		•	•	•••	•	•																										
		• •		••	•						• •		•••																												
		••		• •	•		L			••	• •		• •																												
		• •	• •	• •	• •		II		•	••	• •		•••																												
		• •	• •	• •			ΙΙ	•		••	• •		• •																												
		•	• •	• •			\mathbf{X}			• •	• •		• •		•	• •		••	• •					• •	• •	• •		•						• •			• •		••		
	•	•	• •			II	•			• •	• •		• •		•	••		•••	• •					• •	• •	• •		•						• •			• •		• •		
	• •	•	• •	00			•			• •	• •		• •			• •		• •	•					• •	• •			•									• •		• •		
• •	•					Y .				•			• •		•	• •		• •	•					•	•			•									• •		• •		
														•			•					•														•		•			
			MM																																						
			H																																						
		\leftarrow			•••	•••	•	•••	•			•	• •	•	•	•	•	•	•	•	•••	•	•••	•	•	• •		•						• •			•••		•••		
			I	• •	• •	• •		• •		•	•		• •		•	•		• •	•					•	•	• •		•						• •			• •		• •		

RATIONALE TO SUPPORT FURTHER EVALUATION WITH INTERMITTENT DOSING AND IN COMBINATION

NEXT STEPS

MONOTHERAPY

- Intermittent, lower dosing: PI's recent Nature paper demonstrates that intermittent dosing can abrogate toxicity of PI3Kδ inhibitors without impacting antitumour response [1]
- Use in more established settings: current toxicity likely owed to immunocompetency of neoadjuvant patients

ANTI-PD-1/PD-L1 COMBO

- In a recent Nature paper, Professor Simon Eschweiler demonstrated that intratumoural regulatory T cells can impede the efficacy of anti-PD-1 therapy
- Depletion of Tregs prior to anti-PD-1 treatment was associated with a better survival outcome [2]
- Given the Treg displacement seen in AMG-319-treated patients, PIs are keen to explore the anti-PD-1 combo

ANTI-LAG-3 COMBO

- LAG3 expression on Tregs is necessary for their suppressive function
- Professor Sarah Lauder demonstrated anti-LAG3 potentiated PI3Kδ based immunotherapy, resulting in successful tumour control in all treated mice [3]
- There are no trials currently investigating an anti-LAG3 in combination with a PI3K δ inhibitor

AMG-319 IS THE MOST ADVANCED PI3Kδ-SELECTIVE INHIBITOR IN DEVELOPMENT FOR SOLID TUMOURS

MARKET LANDSCAPE

* Excludes trials for dual or pan selective PI3K inhibitors, excludes PI3Kδi trials for haematological malignancies ClinicalTrials.gov; PharmaProjects

A COMPREHENSIVE IP AND DATA PACKAGE IS AVAILABLE FOR FURTHER DEVELOPMENT

API supply

SUMMARY

AMG-319 is a Phase II ready, highly selective PI3K δ inhibitor

- Most advanced PI3Kδ-selective inhibitor in development for solid tumours
- Phase IIa proof of mechanism evidence, with Treg displacement and increased intratumoural CD8+ T cell cytotoxicity observed
- Potential routes for development in oncology through dose optimisation, more-established solid tumour setting and combinations
- Comprehensive data package (preclinical and clinical) and patent life to support further development
- Pre-existing API supply sufficient for follow-on trial

CRUK are seeking a new partner to license AMG-319 and have a full IP, data and information package available for evaluation and regulatory submission

FURTHER FASTER TOGETHER

THANK YOU

Please contact Laura.Huynh@cancer.org.uk or Claire.Hyder@cancer.org.uk for further information